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Abstract. Energy spectra of a particle with massm and chargee in the cubic Aharonov–Bohm
billiard containing around 104 consecutive levels starting from the ground state have been analysed.
The cubic Aharonov–Bohm billiard is a plane billiard defined by the cubic conformal mapping of
the unit disc pervaded by a point magnetic flux through the origin perpendicular to the plane of
the billiard. The magnetic flux does not influence the classical dynamics, but breaks the anti-
unitary symmetry in the system, which affects the statistics of energy levels. By varying the shape
parameterλ the classical dynamics goes from integrable (λ = 0) to fully chaotic (λ = 0.2; Africa
billiard). The level spacing distributionP(S) and the number variance62(L) have been studied for
13 different shape parameters on the interval (06 λ 6 0.2). Gaussian unitary ensembles statistics
has proven correct for the completely chaotic case, while in the mixed regime the fractional power-
law level repulsion has been observed. The exponent of the level repulsion has been analysed and
is found to change smoothly from 0 to 2 as the dynamics goes from integrable to ergodic. This is
precisely the analogy of the fractional power-law level repulsion observed in the Poisson–Gaussian
orthogonal ensemble (GOE) transition by Prosen and Robnik (1993, 1994) and it thus essentially
differs from the prediction of the random matrix theories. The semiclassical Berry–Robnik theory is
expected to be correct in the ultimate semiclassical limit. However, we argue that the semiclassical
regime has not been reached and give an estimate for the number of energy levels required for the
Berry–Robnik statistics to apply.

The objective of this paper is to study the energy level statistics of a system without anti-unitary
symmetry, in the transition region between classical integrability and full chaos (ergodicity).
This is an important issue and deserves a few introductory explanations.

As for the spectral statistics in such a regime we expect some kind of a transition between
Poisson and Gaussian unitary ensembles (GUE) statistics. Like in the case of Poisson–GOE,
one might try to model this transition by the appropriate random matrix ensembles, as has been
performed by Tomsovic [1], Frenchet al [2], Leyvraz and Seligman [3] and most recently by
Guhr and M̈uller-Groeling [4], where one studies the statistics of a sum of a Poisson diagonal
matrix plus a GUE matrix. In [4] novel supersymmetric methods are used to solve this problem
with new analytic results. At sufficiently small spacings this model leads unavoidably to
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quadratic level repulsion, in precise analogy to the linear level repulsion in the Poisson–GOE
case as shown analytically by Robnik [5] for two-dimensional matrices, by Izrailev [6] for four-
dimensional matrices and numerically by Prosen [7] for high-dimensional matrices. The main
point of this paper is to demonstrate that the above modelling and its conclusions are generally
correct but only on an exponentially small (energy level spacing) scale1S ∝ exp(−const/h̄),
as has been recently explained by Robnik and Prosen [8]. At energy ranges larger than1S,
we in fact observe, the fractional power-law level repulsion whereP(S) ∝ Sβ at sufficiently
small but not too smallS, namely1S 6 S 6 1, whereβ can be different from 0 (Poisson),
1 (GOE) or 2 (GUE), and thus can take on any values in the interval [0, 2]. This has been
firmly demonstrated for the Poisson–GOE case by Prosen and Robnik [9, 10], and is the main
subject of this work where we have the Poisson–GUE transition in a dynamical system at not
too high energies. The origin of the fractional power-law level repulsion is identified with the
phenomenon of the (dynamical) localization of chaotic (irregular) quantal states and with the
quantal Kolmogorov–Arnold–Moser (KAM) structure as observed in [9, 10]. Therefore this
work and our numerical results are by no means a mere repetition or reformulation of previous
mathematical models of the random matrix theories, but describe the aspects of dynamical
localization effects. For a recent review see [25].

Introducing a magnetic field to a plane billiard breaks the time reversal symmetry.
However, if there are space symmetries present, there can be a combined space–time symmetry
in the system, which is anti-unitary [11]. Therefore, a billiard with no space symmetries is
required. The natural choice is the cubic billiard defined by the conformal mapping of the unit
disc (|z| 6 1)

w = z + λz2 + λei π3 z3 (1)

onto the physical planew, with the shape parameterλ. A point magnetic flux through the
origin perpendicular to the plane of the billiard is introduced. Such billiard systems are called
Aharonov–Bohm billiards. The classical dynamics is unaffected by the point flux† and the
system has the scaling property, which says that the classical dynamics is the same at all
energies. The particle is therefore considered to have a unit speed. This family of billiards
was introduced and first studied by Berry and Robnik [12].

Energy level statistics in the limiting, fully chaotic case of an Africa billiard (λ = 0.2),
has been found to be consistent with the GUE of random matrices [13, 14]. We should
stress that there is no rigorous proof that the classical motion in an Africa billiard is really
ergodic. However, even a very careful numerical study cannot detect any significant island
of stable/regular motion in the classical phase space. In this paper we have investigated the
energy level statistics in the regime of mixed classical dynamics and have foundthe fractional
power-law level repulsion‡, while we argue that the semiclassical theory of Berry and Robnik
[15] applies for much larger sequential quantum numbers (see also [8]), in our case say 108.
We also reconfirm [12, 13] the quadratic level repulsion and the validity of GUE (level spacing
distribution and number variance) statistics in the ergodic case with high statistical accuracy.

The Schr̈odinger equation for the system [12] is

∇2ψ(r, φ)− 2iα

r2

∂ψ

∂φ
− α

2

r2
ψ(r, φ) + k2

∣∣∣∣dwdz
∣∣∣∣2ψ(r, φ) = 0

ψ(1, φ) = 0.
(2)

† Only the trajectories which pass through the origin exactly are affected, but they have measure zero among the
trajectories.
‡ The phenomenon of fractional power-law level repulsion has been typically found in mixed systems with anti-unitary
symmetry and not too high energies (see [10, 9] and the references therein).
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Herek2 = 2mE
h̄

whereE is the energy and the parameterα = e8
2πh̄ , where8 is the magnitude of

the magnetic flux and 2πh̄ is the Planck’s constant. By(r, φ) we denote the polar coordinates
in thez-plane. The relevant region of the values ofα is [0, 1

2]. It can easily be shown [11–13]
that the anti-unitary symmetry is still present for integer and half integer values ofα, so the
most appropriate value isα = 1

4. We exclusively choose this value in our present calculations.
In the integrable case (λ = 0) we expect to find Poissonian energy level distribution

P(S) = e−S (3)

while in the completely chaotic caseP(S) is predicted by the GUE of the random matrix
theory. The Wigner approximation† gives for GUE

P(S) = 32

π2
S2e−

4
π
S2
. (4)

For smallS we haveP(S) ∝ S2, i.e. quadratic level repulsion.
Let us first describe a semiclassical argument (see [16]) to estimate the number of

converged energy levels in our calculation. By ‘converged’ we mean an accuracy of at least
one per cent of the mean level spacing. We expressed the matrix elements of the Hamiltonian
H in a basis defined by eigenvectors of the integrable HamiltonianH 0 (circular billiard,λ = 0,
see [12, 17]). We truncated the basis at theN0th vector and diagonalized the finite (N0×N0)
matrix. The eigenvectors|n〉 ofH 0 are defined asH 0|n〉 = en|n〉 and the eigenvalues ofH as
H |α〉 = Eα|α〉. The question is, how many accurate energy levelsEα associated withH are
there in such a calculation? In the semiclassical limit the Wigner transform of an eigenstate
with energyE is localized on the classical energy surface (see [18, 19] and the references
therein).

This yields that an energy levelEα of H will converge if all eigenvectors|n〉 of H 0 with
the energy surfacesH 0(Eq, Ep) = E0

n intersecting the energy surface ofH ,H(Eq, Ep) = Eα, are
present in the truncated basis‡. Geometrical consideration of foliation of energy surfaces (see
[18] and the references therein) gives

N

N0
= r(λ) = A(λ)

π max|z|61 | dwdz |2
(5)

whereA(λ) is the area enclosed by the billiard boundaries and is equal toA(λ) = π(1+5λ2) for
the cubic billiard. The fraction of the converged levels as a function ofλ is plotted in figure 1.
Approximately one third of the levels are correct atλ = 0.2, whereas atλ = 0.05 there are
about two thirds of good levels. As mentioned above, by a good level we mean an accuracy
of at least one per cent of the mean level spacing. Of course, thisa priori criterion is helpful,
but the final judgement of the precision was based on the actual numerical convergence of the
levels.

If the basis functions are arranged in a ‘smart’ way, the (N0 × N0) matrix which has
to be diagonalized has a band structure. In fact we do not diagonalize the Hamiltonian, but
its inverseH−1 [20] which can have the desired band structure. The rearrangement of the
basis is described in [9]. The CPU time demand of the diagonalization drops fromO(N3) to
O(N2.5) due to the rearrangement. The size of the matrix wasN0 = 18 000 forλ = 0.2 and
N0 = 15 500 for 13 other shape parameters from table 1. By diagonalizing the band matrices
the 14 spectra have been obtained containingr(λ)N0 accurate levels.

† We tested the quality of the Wigner approximation by comparing it to the exact infinitely-dimensional solution (see
[24]) and found that Wigner approximation is almost perfectly correct, the tiny deviations from the exact solution are
two orders of magnitude smaller than the deviations of our numerical results.
‡ It can be shown that the terms in the Hamiltonian (2) containingα are of the second order in ¯h, so the magnetic
flux does not influence the density of states in the semiclassical limit (of course, it mixes the levels and affects the
statistics).



1430 M Robnik et al

0.00 0.10 0.20 0.30
λ

0.0

0.2

0.4

0.6

0.8

1.0

N
/N

0

Figure 1. The number of converged levels as a function of the shape parameterλ.

Table 1. The classical valueρcl2 for different shape parametersλ. The third and the fourth columns
are the best-fitting values for the Berry–Robnik and Brody model, respectively (see further text).

λ ρcl2 ρBR2 β

0.000 0.00 0.18 0.00
0.010 0.05 0.26 0.02
0.017 0.15 0.28 0.03
0.022 0.26 0.32 0.05
0.025 0.34 0.35 0.09
0.028 0.58 0.36 0.03
0.033 0.75 0.41 0.15
0.040 0.86 0.49 0.16
0.049 0.92 0.68 0.48
0.055 0.99 0.78 0.69
0.062 0.99 0.77 0.87
0.070 0.99 0.94 1.42
0.100 1.00 0.97 1.58
0.200 1.00 0.99 1.93

Using the Weyl formula the levels have been unfolded to unit mean level spacing
and nearest neighbour level spacing distributionP(S) and number variance62 have been
calculated. Instead ofP(S) the cumulative level spacing distributionW(S) = ∫ S

0 P(s) ds
is shown in figure 2. In the insets we show the so-calledU -functions [10, 9] which are
explained in more detail below. By fitting datalocally (S 6 0.5) to the Brody distribution,
Pβ(S) = aSβ exp(−bSβ+1) [21], the behaviour ofP(S) for smallS in the transition region
06 λ 6 0.2 has been analysed. However, we know that the Brody distribution cannotglobally
(for all S) capture the physicalP(S) (at least forβ > 1). Nevertheless, for small spacings,
S < 0.5, we found good agreement with the fractional power-law level repulsion which is
provided by the Brody distribution. The results are shown in figure 3 and in table 1 and figure 5.
In the figure 3 there is theT function shown, which transforms the Brody distribution to the
straight line:T (ln S) = ln[− ln{1− W(exp(ln S))}]. Fitting the numerical data to the line,
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Figure 2. The cumulative level spacing distributionW(S). Numerical data: full curve, Poisson:
short-broken curve, GUE: long-broken curve and Berry–Robnik: chain curve. For the definition
of theU functions plotted in the insets, see text.

the slope is the exponent of the level repulsion plus one. The statistical error of the measured
values is shown with the bars. We also note an interesting observation, namely at a certain point
in the transition region between Poissonian to GUE statistics, namely forλ ≈ 0.06 (where
classical dynamics is already almost fully chaotic!), the intermediate level spacing statistics
is very close to the GOE statistics or the Brody distribution withβ ≈ 1. Please see figure 2,
for λ = 0.055. However, this is the only region where the Brody distribution, except for the
limiting caseβ = 0, has certain global relevance for non-small spacingsS. A good agreement
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Figure 2. (Continued)

with the Poisson statistics is seen in the integrable case (λ = 0), while small deviations from
GUE statistics in the fully chaotic case are observed. The deviations for 0.055< λ < 0.2 are
probably due to localization of the wavefunctions, e.g. scars, and further work is necessary to
explain why the agreement with GUE statistics forλ = 0.2 is highly statistically significant.
For smallS the quadratic level repulsion is verified atλ = 0.2. The fractional power-law level
repulsion with the exponentβ varying continuously from 0 to 2 is observed. From figure 3 we
can also confirm that the Brody distribution is only valid locally, forS < 1.

As for the number variance62(L), we have observed a continuous transition from Poisson,
62
Poisson(L) = L, to GUE,62

GUE(L) ≈ 0.10 lnL + 0.34, statistics (figure 4). The saturation
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Figure 2. (Continued)

sets in atL∗ ∼ 20, which is roughly in agreement with Berry’s semiclassical theory [22]. In
the fully and strongly chaotic caseλ = 0.2 we have found very nice agreement with GUE,
however, forL > L∗, we observe a small but significant disagreement of numerical data with
GUE and non-universal oscillations of62(L).

We also explored the relevance of the Berry–Robnik theory, which is based on the
statistically independent superposition of Poissonian sequence of regular levels and GUE
sequence of chaotic levels, each having statistical weight equal to the relative measure of the
corresponding classical invariant component.

Following the procedure in [15] we derived the two-component Berry–Robnik formula
for Poisson–GUE transition:

P BR(S) = e−ρ1S

[(
32

π2
ρ4

2S
2 +

8

π
ρ1ρ

2
2S + ρ2

1

)
e−

4
π
ρ2

2S
2

+ (2ρ1ρ2 − ρ2
1ρ2S)erfc

(
2√
π
ρ2S

)]
(6)

whereρ1 = 1− ρ2 is the relative measure of the regular part of the classical phase space. The
classical work is to determineρcl1 andρcl2 . Different methods and difficulties connected to this
work are presented in [23]. After careful study the following method has been chosen. The
surface of section† is first divided into a mesh ofM ×M cells. A trajectory is then run on
the largest chaotic component. Each celli has a counter which counts the number of times a
trajectory passes the cell,ηi . After having made enough steps the distribution of the numbers
η is plotted. The distribution has a peak aroundη = 0, a minimum and another maximum for
larger values ofη. If the distribution is normalized, the area to the right of the minimum is
equal toρ2. In table 1 there are values ofρ2 for different shape parametersλ.

The quantum parameterρBR2 is determined through fitting to equation (6) and should
be compared to the classical measureρcl2 . The results are presented in figure 5 and in
table 1. In the insets of figure 2 the fine scale deviations from the Berry–Robnik formula

† Surface of section, chosen in the standard way, see [12, 17].
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Figure 3. The functionT (ln S) for the some of the calculated spectra as in figure 3. Short-broken
lines give the Poissonian distribution, while the long-broken lines are the limiting Brody distribution
(for β = 2) which is, however, incorrect in the tail.

are plotted in terms of theU(W(S)) − U(WBR(S)) versusW(S) (full curve). We also
plot U(WBrody(S)) − U(WBR(S)) for comparison (broken curve). The transformation
U(W) = 2

π
arccos

√
1−W is used [9] in order to have uniform statistical error over the

plot, δU = 1/(π
√
N). The dotted horizontal lines indicate±δU . The Berry–Robnik fit

is not statistically significant and the values of the fitting parametersρBR
2 are different from

the classical valuesρcl
2 . Why this is so and how the crossover from Brody-like behaviour to

Berry–Robnik takes place is discussed in [8]. As one can see, at smallS, (and therefore at
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Figure 3. (Continued)

smallW(S)) the agreement with Brody is better than Berry–Robnik, and occasionally, like
e.g. atλ = 0.055 and 0.040, even globally Brody seems to capture the behaviour of our data,
although, on the other hand, there areexpected deviationsat largeS (and largeW(S)) e.g. in
the fully chaotic case of an Africa billiard (λ = 0.2), whereβ = 1.93, and Brody asymptotic
behaviour at largeS is certainly wrong, because its exponent varies∝ S3, which is different
from GUE in equation (4),∝ S2. What we see in thisU -function representation is consistent
with theT -function representation in figure 3.

In this paper we have presented the numerical computation and statistical analysis of
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Figure 3. (Continued)
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Figure 4. The number variance statistics62(L) for different shape parameters. The limit cases
are shown as chain (Poisson) and broken (GUE) curves.

energy spectra of a Hamiltonian system with mixed classical dynamics and without anti-unitary
symmetry, namely the Aharonov–Bohm cubic conformal plane billiard. We reconfirmed the
GUE statistics in the ergodic (fully chaotic) case with approximately 6000 good consecutive
energy levels whose accuracy is better than one per cent of the mean level spacing. Further, in
the KAM regime we have foundthe fractional power-law level repulsionwith the exponent
varying smoothly from zero to two as the corresponding classical dynamics goes from
integrable to ergodic. This is an important phenomenon, which cannot be understood in terms
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Figure 5. Calculated values ofρcl2 , ρBR2 and 1
2βBrody as functions ofλ.

of relatively simple and straightforward modelling within the framework of random matrix
theories where one studies the Poisson–GUE transition predicting the quadratic level repulsion.
In mixed dynamical systems at not too high energies we should observe the quadratic level
repulsion only at exponentially small energy level spacing scalesS 6 1S ∝ exp(−const/h̄),
which is very difficult. At intermediate scalesS, 1S 6 S 6 1, we should observe the
fractional power-law level repulsion, whose origin is in the localization phenomena of chaotic
eiegenstates or/and is due to the quantal KAM structure. These dynamical phenomena are not
captured by the above-mentioned random matrix theories.

On the other hand we know that in the ultimate semiclassical limit the Berry–Robnik theory
[15, 8] should apply, which does not exhibit level repulsion (PBR(S = 0) = ρ2

1 6= 0). The
resolution of this disagreement lies in the fact that the key assumptions of the Berry–Robnik
theory are fulfilled only for extremely large sequential quantum numbers or small effective
Planck’s constant. Namely, one should require extendedness of the Wigner functions on the
whole corresponding classically allowed invariant components of phase space. This is only
true if theHeisenberg time, tH = 2πh̄/〈1E〉 (the time until the discreteness of the spectrum
is not yet resolved and the quantum evolution follows the classical one), is larger than the
classicalergodic time, te (the typical time after which classical distributions reach equilibrium
steady state on the invariant set). In our case we have typicallyte & 104 (velocity is one), so
the conditiontH > te yields that the sequential numberN should be larger than about 108.
We believe that this paper contributes to the new developements in the wide field of research
of quantum chaos, recently reviewed by Weidenmüller et al [19]. Specifically, some of the
main issues concerning the Poisson–GOE transiton in dynamical systems have been recently
addressed by Robnik and Prosen [8] and reviewed by Robnik [25].
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